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In experimental examples of hydrodynamicthermal breakdown (HTB) [1], it has been observed that it is
possible to use this phenomenon to determine viscosity as a continuous function of temperature over a wide
range using a nonisothermal rotational viscometer [2]. If the liquid is heated uniformly with time, i.e., a zero-
gradient thermal process holds, and quasistationary hydrodynamic flow conditions obtain, then the reduction
of the viscometer data is appreciably simplified, and the computation scheme suggested in [1, 3] is valid. Non-
isothermal Couette flow between two cylinders has been studied under conditions with constant rotation rate,
and hydrodynamic thermal breakdown is not observed [4-6].

§1. We consider Couette flow of a viscous incompressible liquid, located between two coaxial infinite
cylinders, of which the inner, of radius r =ry, rotates under a given shear stress og=or ,(ry), and the outer,
of radius r=ry, is fixed. We assume that the viscosity is an exponential function of temperature [7}

WT) = upexp [U/(RD)], (1.1)
where p, and U are constant; R is the gas constant; and T is the absolute temperature,
The unsteady system of equations describing the motion and the thermal balance, accounting for energy

dissipation, and the rheological equation for a Newtonian liquid can be written in the form

(o7, _ (1.2)

where wo is the angular rate of rotation; t is the time; p is the density; A is the thermal conductivity of the
liquid; C is the heat capacity; or¢ is the shear stress; r is the radius; and I is the mechanical equivalent of
heat.

We assume that at zero time the liquid temperature is equal to that of the sﬁrrounding medium, while the
stress profile corresponds to isothermal steady flow

T(r) = Ty, Gpglr) =— 0 (ryr)* at t=0. (1.3)

To heat the test material with viscous flow in a nonisothermal viscometer, the internal cylinder is made
thin walled and hollow, while the outer cylinder is made with double walls, with the space between filled with a
heat-insulating material [2]. In this case the inner cylinder is heated slowly by dissipative heating, while heat
transfer between the outer cylinder and the surrounding medium follows Newton's law., Then the boundary
conditions can be written in the form

MSy (BT /0r) = Cyupu Vy (0T/8t) at 1 =ry; (1.4)
-—-M@T/ar) = G(T —— TO) at r=ry,
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where S; is the lateral surface for heat transfer between the liquid and the inner cylinder; Cym, P are the
heat capacity and the density of the material of which the inner cylinder is made; and Vi is the volume of the
cylinder.

Let the angle ¢ increase clockwise and let the inner cylinder rotate in a positive direction; then the stress
on the inner cylinder will be negative, and therefore

g = —0g(0g >0) at r=ry (1.5)
wp =0 at r=r,

Converting Egs. (1.2)-(1.5) to dimensionless form, we obtain

1 oo 1 8
T kL (1.6
50 1 9 L) 0?
_——— -— — o 8/(1+pO)
a z 61(zax)+6s‘e b ’
o = e—O/H80), 90,
dz

8= 0,'0 = —(s/x)? &t T=0,
F (08/0x) = 06/9t, 6= —1 at z-=13,
08/3z=—Bi8, w=0 at z=1,

where
8= (T — T)UNRTE), o= ol
o = ogu(T)/og z=rlr, T=1tA (cor})

are dimensionless variables, and

8 = agrolUl (Mu (T o) IF{RTG), B = RT U,
Pr=Cu(T)/A, Bi=aryk, F=CpriSii{(CupyVy)
are dimensionless parameters.

The system of equations was solved numerically on a computer. The functions 0(x,T), w(x,7),and ¢ x, T)
were determined for various values of the parameters &, and Bi, F, s, Pr.

§2. The HTB phenomenon can arise [1, 3] in nonisothermal dissipative flow of a liquid in a rotational
viscometer model with constant shear stress og. Hence it follows that, for values of the thermal parameter &
greater than the critical value (6 > 6*), the system of equations (1.6). does not have a steady solution, giving the
distribution of temperatures and velocities; in fact, these increase progressively with time. The relation be-
tween the critical value 6* and the geometric parameter s was determined analytically in [8] by solving the
system (1.6) in the steady case for particular values of the parameters F and Bi. Below we study some special
features in the development of HTB with time. Figure la-d shows the distributions of angular velocity and
temperature (dashed and solid lines, respectively) with radii at various times 7 for limiting cases of the
thermal boundary conditions. The values of § were chosen to lie above the breakdown limit (&6 >8*).

1. Isothermal Cylinders: F=0, Bi= (Fig. 1a). The temperature profiles have a maximum inside the
gap. If the maximum point (the "hot" point) is only slightly shifted from the average layer (x=0.75) at zero
time, it is observed to migrate subsequently to some internal point of the gap (x=0.6), where a temperature
breakdown occurs. At that point the velocity gradient and the dissipative heat-release function have maxima.
From the shape of the angular velocity profiles, which have a kink, one can conclude that the motion of the
liquid from the inner cylinder does not propagate over the whole gap, but only into a certain part of it, and in
practice one can identify a motionless zone of liquid (the core) comprising approximately half of the gap. In
this case the approximation regarding the average velocity gradient and the use of the isothermal formulas for
calculating viscosity become inappropriate.

2. Inner Cylinder Isothermal and Outer Adiabatic: F=0, Bi=0 (see Fig. 1b). At zero time the tempera-
ture distribution is monotonic, and the hot point is located on the outer thermally insulated cylinder. However,
a maximum appears later in the temperature profile, and this maximum is displaced inside the gap and stops
for x= 0.6. Thus, in this case there is temperature breakaway (hydrodynamic breakdown) inside the liquid
volume. The fact that very favorable conditions for temperature breakaway are created at a certain interior
point, and not on the adiabatic surface, is due to the very strong effect of dissipative heat release, which is a
maximum for some internal layer having the largest velocity gradient. An increase in temperature of the
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layers of liquid of the outer cylinder creates conditions for an increase in velocity gradient with time, and, in
contrast with the case considered earlier, the liquid motion spans the entire gap.

3. Inner Cylinder Adiabatic and Outer Isothermal: F=100, Bi= % (gee Fig. 1c). Here the hot point is
located on the inner cylinder, where the temperature breakaway also occurs. In this case one can speak of
hydrodynamic "ignition™ of the liquid from the hot surface of the inner cylinder. Here the motion spans only
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some 1nner layer of the liquid, and the layer of liquid adjacent to the outer cylinder remains motionless.

4. Adiabatic Cylinders: F=100, Bi=0 (see Fig. 1d). In this case dissipative heating of the liquid occurs
uniformly, and the temperature distribution is insignificant up to ®~5. Then there is weak heating of the inner
cylinder (this absence of heating corresponds to F— «), and the temperature distribution becomes more signifi-
cant. The maximum temperature occurs on the surface of the inner cylinder and the hydrodynamic ignition
proceeds from there. Since the angular velocity profiles do not have characteristic points in this case, we
cannot identify any motionless zone in the liquid.

The absence of heat transfer or the fact that it is small af the cylinder walls is very favorable for visco-
metric variations in the nonisothermal method [9].

Thus, in all the above cases we can make the following comments:

a) depending on the thermal boundary condition, the inner cylinder experiences either conditions for
hydrodynamic ignition (for a hot wall) or for self-ignition when there is temperature breakaway within the
liquid volume (for a cold wall); the rules for the development of hydrodynamic thermal breakdown are similar
to those for breakdown due to chemical reactions [10];

b) depending on the thermal boundary condition, a wide motionless zone may develop in the liquid on the
outer cylinder (for a cold wall), and the heat transmission to this region is determined by heat conduction.

The distributions of temperature and angular velocity across the gap between the cylinders, obtained
numerically for the conditions of the experiment with 6> 8%, are shown in Fig. 2, which confirms that the above
assumption that there is no temperature distribution in the flow zone when conditions are close to adiabatic
over a rather wide range of temperature variation is valid [3]. The temperature distribution is insignificant
only in strongly heated regions (®> 4), which are practically unattainable experimentally. Thus, this is evidence
that one can determine the viscosity using the nonisothermal method described in [9].

§3. The experimental investigations of HTB were carried out in a specially developed rotational viscom-
eter with constant momentum and a pneumatic drive [2]. The test material was castor oil (Pr=3-10%. The
parameters of the equipment, determined earlier, corresponded to Bi= 2.8, s=0.8, F=10 [1]. In [1] there was
less heat transfer to the surrounding medium (Bi=0.7, $§=0.78, F=10). The coefficient for heat transfer from
the liquid to the outer cylinder wall was calculated by the regular regime method [11], and for Bi=2.8 and
Bi=0.7, it turned out to be a=0.483+10~% and 0.146+ 1073 cal* cm™2-sec™!-deg™!, respectively.

Figure 3a and b shows a comparison of the experimental and theoretical dependence (dashed and solid
lines, respectively) with time of the liquid temperature ®,(t) at the wall of the motionless outer cylinder and
of the rate of rotation wg(T) of the moving eylinder, with Bi=0.7 (curves 1 and 1' correspond to & =0.76, curves
2 and 2' correspond to § =1.16, and curves 3 and 3' correspond to 8 =2.12). It can be seen that there is a
complete qualitative agreement between the theoretical and experimental results. In the results of the compar-
ison in the region of large rates of strain the structural defects of the instrument are very evident (e.g., de-
fective centering of the rotor), and in the low rate of strain region there is inaccuracy-in determining the heat
transfer,

It should be noted that for Bi=0.7 the nature of the curves differs for ®(7) and w(r). The liquid warmup

- w=—Tincreases monotonically with time, butfor the curves 6there is a region of gentle slope, after a sharp initial

increase in the rate of rotation (overcoming the inertia of the medium), and only after this is there a progres-
sive increase in w. The reason is the quasisteady nature of the flow process, in which hydrodynamic varia-
tions are caused only by variations in viscosity, which depends exponentially on temperature, according to Eq.
(1.1). The basic features of this dependence determine the nature of the function w(7).
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TABLE 1

Critical Critical Critical rotation
parameters temperature rate
6*

Method of T, * o, * * *
determination 08 R B %
Experiment 227 | 98| 12 1,46 | 410 0,524
Numer, calc, 3,07 | 13,5 8,53 | 0,8 500 0,46
Cale, by [1] — 1 94 1031 |10 375 0,483

For Bi=2.8 (s=0.8, F=10) [1] a comparison of the results is shown in Fig. 4, which presents the theor-
etical curve 1 and the computed curve 2 for the induction period 7, as a function of A=4§/8%, the relative dis~
tance from the self-ignition limit. For the induction period we assume the time to achieve a prebreakdown
warmup of ®=2 (i,e.,AT = 20°C). For A—1 the curves show the greatest discrepancy, and the curves practi-
cally merge when the departure from the limit is quite large (A>3).

The critical parameters for hydrodynamic thermal breakdown have been calculated earlier in [1]using
an unsteady approach, which did not take into account the radial temperature distribution. Table 1 shows
results of the numerical solution calculation of these characteristics in dimensional and dimensionless form
and also the critical values of the thermal parameter 6, where T:)k is the critical thermal breakdown tempera-
ture; AT’f, nk @’f, wg , are, respectively, the largest values of the steady temperature and rotation rate in di-
mensional and dimensionless form. A comparison of these characteristics with the experimental values and
with the results of the previous computation shows approximate agreement. Thus, it is allowable to compare
the critical values of the parameter & (the analog of the Frank~-Kamenetskii parameter in the steady thermal
breakdown theory) and the parameter v from [1] (the analog of the Semenov parameter from unsteady theory)
and thus to find the effective heat-transfer coefficient [2].
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