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In experimental  examples  of hydrodynamic thermal  breakdown (HTB) [1], it has been observed that it is 
possible  to use this phenomenon to de termine  v iscos i ty  as a continuous function of t empera tu re  over  a wide 
:range using a nonisothermal  rotat ional  v i scomete r  [2]. If  the liquid is heated uniformly with time, i.e., a z e r o -  
gradient  thermal  p roces s  holds, and quasis ta t ionary hydrodynamic flow conditions obtain, then the reduction 
of the v i s come te r  data is appreciably simplified, and the computation scheme suggested in [1, 3] is valid. Non- 
i so thermal  Couette flow between two cylinders has been studied under conditions with constant rotation rate ,  
and hydrodynamic  the rmal  breakdown is not observed [4-6]. 

w We consider  Couette flow of a viscous incompress ib le  liquid, located between two coaxial infinite 
cylinders,  of which the inner, of radius r = r0, rota tes  under a given shear  s t r e s s  ag =e r  e(r0), and the outer ,  
of radius r = rl, is fixed. We assume that the v iscos i ty  is an exponential function of t empera tu re  [7] 

v(T) ---- ,u 0 exp [U/(RT) l, (1.1) 

where #0 and U are  constant; R is the gas constant; and T is the absolute t empera ture .  

The unsteady sys t em of equations descr ib ing the motion and the thermal  balance, accounting for energy 
dissipation, and the rheological  equation for a Newtonian liquid can be writ ten in the form 

c~o)~ l ~ ~a r ~', (1 .2)  
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where ~ r  is the angular  rate of rotation; t is the t ime; p is the density; k is the thermal  conductivity of the 
liquid; C is the heat capacity; r  is the shear  s t ress ;  r is the radius; and I is the mechanical  equivalent of 
heat. 

We assume that  at ze ro  t ime the liquid tempera ture  is equal to that of the surrounding medium, while the 
s t r e s s  profi le  cor responds  to i so thermal  steady flow 

T(r) =~ T o, %o(r) = - -  ag (ro/r) 2 at t = O. (1.3) 

To heat the tes t  mater ia l  with v iscous  flow in a nonisothermal  v i scomete r ,  the internal cylinder is made 
thin wailed and hollow, while the outer cylinder is made with double walls,  with the space between filled with a 
heat- insula t ing mater ia l  [2]. In this case the inner cylinder is heated slowly by dissipative heating, while heat 
t r ans fe r  between the outer  cylinder and  the surrounding medium follows Newton's law. Then the boundar 7 
conditions can be written in the form 

k S  t (OT/Or) = C~p,~ V~ (OT/Ot) at r = ro; (1.4) 

--~,(OT/Or) = a ( T  - -  To) at r = r  i, 
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where SI is the la tera l  surface  for heat  t r ans f e r  between the liquid and the inner cylinder;  CM,PM are  the 
heat capacity and the density of the ma te r i a l  of which the inner cylinder is made; and V M is the volume of the 
Cylinder. 

Let the angle ~0 inc rease  clockwise and let the inner cyl inder  rotate  in a posit ive direction; thenthe s t r e s s  
on the inner  cyl inder  will be negative, and there fore  

o, v = - a g ( a g  > 0 )  at r = r o ;  

(or ---- 0 at r = r  t. 

form, we obtain 

t oco . .~  o ((yz'), 

oe , o { x ~  ~ 
= z o z \  o=1 + ~ e ~  

e--el(i+~e)_ or (~ = ~, 

0 = O, (~ = --  (six) 2 at x = O, 

F(aOlOx) = O0/Ox, ~ = --  l at x = s, 
O O / O x = - - B i O ,  a ) = 0  at x = l ,  

Convert ing Eqs.  ( 1 . 2 ) - ( 1 . 5 )  to dimensionless  

Where 

a re  d imensionless  var iables ,  and 

O= (T - -  To) U/(RT~), a = a,vlag, 

= ~%~ (To)I% x = rlrx, x = t~./(Cpr~) 

(i.5) 

(1.6) 

94 2 
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Pr = C~ (To)/~., Bi = arx/~,, F = CpraSl /(C.,,p.,,V~,) 

a re  dimensionless  p a r a m e t e r s .  

The sys tem of equations was solved numer ica l ly  on a computer.  The functions | W(X,T), and a (x, 1") 
were de termined for var ious  values of the p a r a m e t e r s  6, and Bi, F, s, Pr .  

w The HTB phenomenon can a r i se  [1, 3] in nonisothermal  dissipative flow of a liquid in a rotational 
v i s come te r  model with constant shear  s t r e s s  ag. Hence it follows that, for values of the thermal  pa ramete r  8 
g r ea t e r  than the cr i t ical  value (8 > 8*), the sys tem of equations (1 .6)does  not have a steady solution, giving the 
distribution of  t empera tu re s  and veloci t ies;  in fact, these increase  p rogress ive ly  with t ime.  The relation be-  
tween the cr i t ical  value 6* and the geomet r ic  p a r a m e t e r  s was determined analytically in [8] by solving the 
sys tem (1.6) in the steady case for par t i cu la r  values of the p a r a m e t e r s  F and Bi. Below we study some special 
features  in the development of HTB with t ime. Figure l a - d  shows the distr ibutions of angular velocity and 
t empera tu re  (dashed and solid lines,  respectively) with radii  at  var ious  t imes  r fo r  llmH2ng cases  of the 
the rmal  boundary conditions. The values of 8 were chosen to lie above the breakdown limit (8 >8" ). 

1. I so thermal  Cyl inders :  F = 0, Bi = oo (Fig. la).  The tempera ture  profi les  have a maximum inside the 
gap. If  the maximum point (the "hot" point) is only slightly shifted from the average  layer  (x=0.75) at zero 
t ime,  it is observed  to migra te  subsequently to some internal point of the gap (x=0.6), where a t empera tu re  
breakdown occurs .  At that point the veloci ty gradient  and the dissipative hea t - re l ease  function have maxima.  
F rom the shape of the angular  velocity profi les ,  which have a kink, one can conclude that the motion of the 
liquid from the inner  cyl inder  does not propagate over  the whole gap, but only into a cer tain par t  of it, and in 
prac t ice  one can identify a motionless  zone of liquid (the core) compris ing approximately half of the gap. In 
this  case the approximation regarding the average  velocity gradient  and the use of the i sothermal  formulas  for 
calculating v iscos i ty  become inappropriate .  

2. Inner  Cylinder  I so thermal  and Outer Adiabatic: F = 0, Bi = 0 (see Fig. lb). At zero  t ime the t e m p e r a -  
ture  distribution is monotonic, and the hot point is located on the outer  thermal ly  insulated cylinder.  However,  
a maximum appears  la te r  in the t empera tu re  profile,  and this maximum is displaced inside the gap and stops 
for x ~  0.6. Thus, in this case there  is t empera tu re  breakaway (hydrodynamic breakdown) inside the liquid 
volume. The fact that ve ry  favorable conditions for t empera tu re  breakaway a re  created at a certain inter ior  
point, and not on the adiabatic surface,  is due to the very  s t rong effect of dissipative heat re lease ,  which is a 
maximum for some internal layer  having the la rges t  velocity gradient.  An increase  in t empera tu re  of the 
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l a y e r s  of liquid of the outer  cyl inder  c r e a t e s  conditions for an i nc rea se  in veloci ty  gradient  with t ime,  and, in 
con t ras t  with the case  cons idered  e a r l i e r ,  the liquid motion spans  the en t i re  gap. 

3. Inner  Cyl inder  Adiabat ic  and Outer  I s o t h e r m a h  F= 100, Bi = ~ (see Fig. lc) .  He re  the hot point is 
loca ted  on the tn~er  cyl inder ,  where  the t e m p e r a t u r e  b reakaway a l so  occurs .  In th is  case  one can speak of 
hydrodynamic  , igni t ion"  of  the liquid f rom the hot su r face  of the inner  cyl inder ,  H e r e  the motion spans only 
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some tuner  l ayer  of the liquid, .and the layer  of liquid adjacent  to the outer cylinder remains  motionless.  

4. Adiabatic Cyl inders :  F=  100, B i=0  (see Fig. ld). In this case dissipative heating of the liquid occurs  
uniformly,  and the t empera tu re  distr ibution is insignificant up to | ~ 5. Then there  is weak heating of the inner  
cyl inder  (this absence of heating cor responds  to F-* ~), and the t empera tu re  distr ibution becomes more  signifi-  
cant. The maximum t empera tu re  occurs  on the surface  of the inner cylinder and the hydrodynamic ignition 
p roceeds  f rom there .  Since the angular  veloci ty prof i les  do not have charac te r i s t i c  points in this case,  we 
cannot identify any mot ionless  zone in the liquid. 

The absence of heat t r a n s f e r  or  the fact that it is smal l  at  the cyl inder  walls is very  favorable for v i sco -  
me t r i c  var ia t ions  in the nonisothermal  method [9]. 

Thus,  in all  the above cases  we can make the following comments:  

a) depending on the the rma l  boundary condition, the inner  cylinder exper iences  ei ther  conditions for 
hydrodynamic  ignition (for a hot wall) or  for  self- igni t ion when there  is t empera tu re  breakaway within the 
liquid volume (for a cold wall); the rules  for the development of hydrodynamic  thermal  breakdown are  s imi lar  
to those for breakdown due to chemical  react ions  [10]; 

b) depending on the the rmal  boundary condition, a wide motionless  zone may develop in the liquid on the 
outer  cyl inder  (for a cold wall), and the heat t r ansmiss ion  to this region is determined by heat conduction. 

The distr ibutions of t empera tu re  and angular  velocity a c r o s s  the gap between the cylinders,  obtained 
numerica l ly  for the conditions of the exper iment  with 8 > 5" ,  a re  shown in Fig. 2, which conf i rms that  the above 
assumption that  there  is no t empera tu re  distr ibution in the flow zone when conditions a re  close to adiabatic 
over  a r a the r  wide range of t empera tu re  var ia t ion  is valid [3]. The t empera tu re  distr ibution is insignificant 
only in s t rongly heated regions (| > 4), which a re  prac t ica l ly  unattainable experimental ly.  Thus, this is evidence 
that one can determine the v iscos i ty  using the nonisothermal  method descr ibed  in [9]. 

w The exper imenta l  investigations of tITB were ca r r i ed  out in a special ly developed rotational v iscom- 
e te r  with constant momentum and a pneumatic  drive [2]. The tes t  mate r ia l  was cas tor  oil ( P r = 3 -  104). The 
p a r a m e t e r s  of the equipment, determined ear l ie r ,  cor responded to Bi= 2.8, s=0 .8 ,  F=  10 [1]. In [1] there  was 
less  heat t r ans f e r  to the surrounding medium (Bi = 0.7, s = 0.78, F = 10). The coefficient for heat t r ans fe r  f rom 
the liquid to the outer  cylinder wall was calculated by the regula r  regime method [11], and for Bi = 2.8 and 
Bi=0 .7 ,  it turned out to be ~=0.483 �9 10 -3 and 0.146" 10 -3 cal" cm -2- sec  -1. deg - I  , respect ively .  

F igure  3a and b shows a compar ison of the experimental  and theore t ica l  dependence (dashed and solid 
lines,  respect ively)  with t ime of the liquid t empera tu re  | at the wall of the motionless  outer  cylinder and 
of the rate of rotation Ws(T) of the moving cylinder,  with Bi=0 .7  (curves 1 and 1' cor respond to 8 =0.76, curves 
2 and 2'  cor respond to 5 = 1.16, and curves  3 and 3'  cor respond to 8 = 2.12). It can be seen that there is  a 
complete qualitative ag reement  between the theoret ical  and experimental  resul ts .  In the resu l t s  of the compar -  
ison in the region of la rge  ra tes  of s t rain the s t ruc tura l  defects of the ins t rument  a re  ve ry  evident (e.g., de-  
fective center ing of the rotor) ,  and in the low rate  of  s t ra in  region there  is i n a c c u r a c y i n  determining the heat 
t r ans fe r .  

It should be noted that for Bi = 0.7 the nature of the curves differs for | and co(m-). The liquid warmup 
w - - r  increases  monotonically with t ime, but for  the curves  e there  is a region of gentle slope, af ter  a sharp initial 
increase  in the rate  of rotation (overcoming the inert ia  of the medium), and only afLer this is there  a p r o g r e s -  
sive increase  in w. The reason is the quasisteady nature of the flow process ,  in which hydrodynamic v a r i a -  
t ions a re  caused only by var ia t ions  in viscosi ty ,  which depends exponentially on t empera tu re ,  according  to Eq. 
(1.1). The basic  features  of this dependence determine the nature of the function ~(T). 
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TABLE i 
Critical I 

Method of ~ / 
determination ~ }  

Experiment 
Numer. calc. 
Cale. by [I] 

Critical 
temperature 

T 0, AT l , ~ 
~ 

2,27 9,8 12 
3,07 13,5 8,53 

- -  9,4 1 0 , 3 1  

Critical rotation 
rate 

O; n*, rpIIl ~o: 

1 ,i6 410 0,524 

0,8 500 0,46 
t ,0 375 0,483 

For  B i=2 .8  ( s=0 .8 ,  F=10)  [1] a compar i son  of the resu l t s  is shown in Fig. 4, which p resen t s  the t h eo r -  
e t ica l  curve 1 and the computed curve 2 for the induction per iod  T o as  a function of A =6/d*, the re la t ive  d i s -  
tance f rom the se l f - igni t ion  l imit .  For  the induction pe r iod  we a s s u m e  the t ime  to achieve  a prebreakdown 
warmup  of | = 2 ( i . e . ,AT ~ 20~ For  A--1  the curves  show the g r ea t e s t  d i sc repancy ,  and the curves  p r ac t i -  
cally merge when the departure from the limit is quite large (A > 3). 

The critical parameters for hydrodynamic thermal breakdown have been calculated earlier in [i] using 
an unsteady approach, which did not take into account the radial temperature distribution. Table 1 shows 
results of the numerical solution calculation of these characteristics in dimensional and dimensionless form 

, 
and also the critical values of the thermal parameter 6, where T 0 is the critical thermal breakdown tempera- 
ture; ATe, n*, | Ws, are, respectively, the largest values of the steady temperature and rotation rate in di- 
mensional and dimensionless form. A comparison of these characteristics with the experimental values and 
with the results of the previous computation shows approximate agreement. Thus, it is allowable to compare 
the critical values of the parameter ~ (the analog of the Frank-~Kamenetskii parameter in the steady thermal 
breakdown theory) and the parameter ~4 from [i] (the analog of the Semenov parameter from unsteady theory) 
and thus to find the effective heat-transfer coefficient [2]. 
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